Tellur

Tellur (chemická značka Te, latinsky Tellurium) je polokovový stříbřitě lesklý prvek ze skupiny chalkogenů používaný v polovodičové technice a metalurgii.

Tellur
  [Kr] 4d10 5s2 5p4
  Te
52
 
               
               
                                   
                                   
                                                               
                                                               
↓ Periodická tabulka ↓
Obecné
Název, značka, číslo Tellur, Te, 52
Cizojazyčné názvy lat. Tellurium
Skupina, perioda, blok 16. skupina, 5. perioda, blok p
Chemická skupina Polokovy
Vzhled stříbřitě lesklá šedá
Identifikace
Registrační číslo CAS 13494-80-9
Atomové vlastnosti
Relativní atomová hmotnost 127,60
Atomový poloměr 140 pm
Kovalentní poloměr 138 pm
Van der Waalsův poloměr 206 pm
Elektronová konfigurace [Kr] 4d10 5s2 5p4
Oxidační čísla −II, II, IV, VI
Elektronegativita (Paulingova stupnice) 2,1
Látkové vlastnosti
Krystalografická soustava hexagonální
Mechanické vlastnosti
Hustota 6,24 g·cm−3 (5,70 g·cm−3 při teplotě tání)
Skupenství pevné
Tvrdost 2,25
Termické vlastnosti
Tepelná vodivost 2 675±0,705 W⋅m−1⋅K−1
Termodynamické vlastnosti
Teplota tání 449,51 °C (722,66 K)
Teplota varu 987,85 °C (1 261 K)
Skupenské teplo tání 17,49 kJ·mol−1
Skupenské teplo varu 114,1 kJ·mol−1
Měrná tepelná kapacita 25,73 J·mol−1·K−1
Elektromagnetické vlastnosti
Měrný elektrický odpor 2×105 nΩ·m
Magnetické chování diamagnetické
Bezpečnost

GHS06

GHS07

GHS08
[1]
Nebezpečí[1]
Izotopy
I V (%) S T1/2 Z E (MeV) P
130Te 34,08 %[2] je stabilní s 78 neutrony
128Te 31,74 %[2] je stabilní s 76 neutrony
118Te 6,00 d[2] ε[2] 118Sb
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).
Se
AntimonTeJod

Po

Objev a základní fyzikálně-chemické vlastnosti

Tellur je velmi vzácný prvek, byl objeven roku 1782 Franzem Josephem Müllerem. Ten rozpoznal, že jde o neznámý prvek, ale tehdy ho nazýval např. metallum problematicum (problematický kov) nebo aurum paradoxum (paradoxní zlato). Název tellurium mu dal až o 6 let později Klaproth, dle lat. tellus (země).

Chemicky patří spíše mezi kovy, ale jsou známy i kyseliny telluru a jejich soli, v nichž chemicky připomíná spíše síru nebo selen.

Požití telluru není smrtelně nebezpečné, avšak stačí pouze 15 mg a po dobu osmi měsíců se u jedince se projeví česnekový závan jak z dechu, tak i z pocení. To je způsobeno metabolickým produktem, dimethyltellanem, který lze najít v česneku a cibuli.[3][4]

Výskyt a výroba

Produkce telluru (2006)

Tellur obvykle doprovází síru a selen v jejich rudách. Má značnou afinitu ke zlatu a v mnoha zlatých ložiscích se vyskytuje jako příměs. Z minerálů jsou známy například tellurid zlata calaverit AuTe2 nebo tellurid olova altait PbTe.

Průmyslově se tellur získává nejčastěji z anodových kalů po elektrolytické výrobě mědi nebo ze zbytků po rafinaci zlata.

Obsah telluru v zemské kůře se pohybuje v rozmezí 0,001–0,005 ppm (mg/kg). Toto extrémně nízké zastoupení, srovnatelné s výskytem platiny, je způsobeno především tvorbou těkavého hydridu, který byl v době formování planety ztracen do vesmíru. V mořské vodě je jeho koncentrace tak nízká, že současnými analytickými technikami nelze jeho obsah spolehlivě změřit.

Sloučeniny a využití

Tellur na křemeni (Moctezuma, Sonora, Mexiko)

Elementární tellur je za normálních podmínek stálý stříbřitě lesklý a poměrně křehký polokov. Snadno se slučuje s kyslíkem a halogeny. Ve sloučeninách se tellur vyskytuje v mocenstvích Te2−, Te2+, Te4+ a Te6+ .

V metalurgii slouží tellur ve formě mikrolegur ke zlepšování mechanických a chemických vlastností slitin. Nízké koncentrace telluru zvyšují tvrdost a pevnost slitin olova i jejich odolnost vůči působení kyseliny sírové. Přídavky telluru do slitin mědi a nerezových ocelí způsobují jejich snazší mechanickou opracovatelnost.

Tellurid gallia nalézá využití v polovodičovém průmyslu. Pro výrobu některých termoelektrických zařízení se používá tellurid bismutu. Ve sklářském průmyslu je v některých speciálních případech tellurem barveno sklo.

Jako velmi perspektivní se jeví použití sloučenin telluru při výrobě fotočlánků. Fotočlánky na bázi telluridu kadmia patří v současné době[kdy?] k nejlevnějším.

Na bázi telluridů jsou i záznamové vrstvy v přepisovatelných optických discích.

Z hlediska působení na lidské zdraví patří sloučeniny telluru mezi toxické a především v průmyslových provozech, kde se vyskytují ve zvýšených koncentracích, je třeba zachovávat přísné bezpečnostní předpisy. Za zvláště nebezpečné je pokládáno vdechování aerosolů a prachu s vysokou koncentrací telluru.

Známé oxidy

Odkazy

Reference

  1. Tellurium. pubchem.ncbi.nlm.nih.gov [online]. PubChem [cit. 2021-05-24]. Dostupné online. (anglicky)
  2. Archivovaná kopie. www.nndc.bnl.gov [online]. [cit. 2018-03-15]. Dostupné v archivu pořízeném dne 2018-10-10.
  3. 52 Tellurium. theodoregray.com [online]. [cit. 2020-07-31]. Dostupné online.
  4. MÜLLER, R.; ZSCHIESCHE, W.; STEFFEN, H. M. Tellurium-intoxication. Klinische Wochenschrift. 1989-11, roč. 67, čís. 22, s. 1152–1155. Dostupné online [cit. 2020-07-31]. ISSN 0023-2173. DOI 10.1007/BF01726117. (anglicky)

Literatura

  • Cotton F.A., Wilkinson J.: Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Související články

Externí odkazy

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.