Kužel
Kužel je oblé těleso, které vznikne jako průnik kuželového prostoru a rovinné vrstvy.
Část kuželové plochy, která tvoří povrch kužele, se označuje jako plášť kužele. Řez kuželového prostoru hraniční rovinou vrstvy se nazývá podstava. Plášť kužele a podstava se nazývají společným názvem povrch kužele. Bod, ve kterém se rovinný řez kužele redukuje na bod, se označuje jako vrchol kužele. Kolmá vzdálenost mezi podstavou a vrcholem se nazývá výška kužele. Vzdálenost mezi vrcholem a podstavou podél pláště je strana kužele.
Je-li podstavou kužele kruh, pak se kužel nazývá kruhový. Pokud kolmice spuštěná z vrcholu na rovinu podstavy prochází středem podstavy kruhového kužele, pak jde o rotační kužel nebo kolmý kruhový kužel. Pokud kruhový kužel není kolmý, pak se označuje jako kosý.
Kuželová plocha a prostor
Mějme jednoduchou uzavřenou křivku , která leží v rovině. Body, které leží na přímkách procházejících libovolným bodem křivky a bodem ležícím mimo rovinu křivky , tvoří kuželovou plochu. Část prostoru ohraničená kuželovou plochou se nazývá kuželový prostor.
Kuželová plocha je množina bodů v prostoru, která vznikne z kužele tím, že odstraníme podstavu a každou úsečku pláště (tj. spojnici vrcholu kužele s bodem hranice podstavy) prodloužíme na přímku. Nejlepší představa je taková, že se jedná o dva středově souměrné (podle vrcholu kužele) kornouty jdoucí do nekonečna.
Rovnice
Kuželová plocha (kvadratický kužel) s vrcholem v počátku, která v rovině prochází elipsou (tzv. řídící křivka), má rovnici
Přímky, které tvoří povrch kužele, se nazývají tvořící přímky.
Tato plocha je asymptotickou plochou (asymptotickým kuželem) hyperboloidů
Pro jde o rotační kužel s osou rotace .
Kuželovou plochu s vrcholem v bodě je vždy možné vyjádřit rovnicí
Rotační kužel
Rotační kužel je rotační těleso vzniklé otáčením pravoúhlého trojúhelníku v prostoru okolo jedné z odvěsen. Otáčením druhé odvěsny vznikne kruhová podstava kužele (někdy také nazývaná jako základna kužele), otáčením přepony pak kuželová plocha nebo jinak plášť kužele. Tento plášť je v podstatě „stočená“ kruhová výseč, jejíž úhel závisí na poměru výšky kužele a poloměru podstavy. Společný vrchol přepony a osy otáčení nazýváme vrchol kužele.
Vlastnosti
Označíme-li poloměr kruhové podstavy kužele a výšku kužele (tj. vzdálenost vrcholu kužele od základny), pak lze vypočítat:
- poloměr pláště (tj. vzdálenost vrcholu kužele od hraniční kružnice podstavy neboli délku strany pláště) pomocí Pythagorovy věty jako
- objem kužele jako
- Symetrické vlastnosti
- Kužel není středově souměrný.
- Kužel je osově souměrný podle spojnice vrcholu kužele se středem podstavy.
- Kužel je rovinově souměrný podle nekonečně mnoha rovin - rovinou souměrnosti je každá rovina, která v sobě obsahuje jeho osu (tj. vrchol a střed podstavy).
- V jistém smyslu je kužel „limitním případem“ posloupnosti pravidelných n-bokých jehlanů pro n jdoucí do nekonečna. To je ostatně vidět i ze vzorce pro objem, který je hodně podobný vzorci pro objem jehlanu.
Kuželosečky
Z geometrického pohledu jsou zajímavé řezy rotační kuželové plochy, tj. průniky této plochy s nějakou rovinou.
Singulární řezy kužele - pokud rovina řezu prochází vrcholem kužele, mohou nastat tři případy:
- průnikem je bod (vrchol kužele), pokud je úhel, který rovina řezu svírá s osou kužele, větší než úhel, který svírají přímky kuželové plochy s její osou
- průnikem je přímka ležící na kuželové ploše, pokud je úhel, který rovina řezu svírá s osou kužele, rovný úhlu, který svírají přímky kuželové plochy s její osou
- průnikem jsou dvě přímky, které se protínají ve vrcholu kužele, pokud je úhel, který rovina řezu svírá s osou kužele, menší než úhel, který svírají přímky kuželové plochy s její osou (nebo v případě, kdy je rovina řezu rovnoběžná s osou kužele)
Regulární řezy kužele - pokud rovina řezu neprochází vrcholem kužele, mohou nastat čtyři případy:
- průnikem je kružnice, pokud je rovina řezu kolmá na osu kužele (obr. B dole)
- průnikem je elipsa, pokud je úhel, který rovina řezu svírá s osou kužele, větší než úhel, který svírají přímky kuželové plochy s její osou, ale rovina řezu není kolmá na osu kužele (obr. B nahoře)
- průnikem je parabola, pokud je úhel, který rovina řezu svírá s osou kužele, rovný úhlu, který svírají přímky kuželové plochy s její osou (obr. A)
- průnikem je hyperbola, pokud je úhel, který rovina řezu svírá s osou kužele, menší než úhel, který svírají přímky kuželové plochy s její osou (nebo v případě, kdy je rovina řezu rovnoběžná s osou kužele) (obr. C)
To je důvod, proč jsou elipsa, parabola a hyperbola nazývány souhrnně kuželosečkami.
Literatura
Související články
- Geometrický útvar
- Kvadratická plocha
- Oblá tělesa
- Mnohostěn
- Válec
- Jehlan
- Komolý kužel
- Elipsa
- Parabola (matematika)
- Hyperbola
Externí odkazy
- Obrázky, zvuky či videa k tématu kužel na Wikimedia Commons
- Slovníkové heslo kužel ve Wikislovníku