Středová souměrnost

Středová souměrnost je typ geometrického zobrazení. Středová souměrnost zachovává vzdálenosti i úhly, jedná se tedy o jedno ze shodných zobrazení.

Definice

Středová souměrnost

Středová souměrnost na přímce, v rovině nebo v prostoru se středem v bodě (tzv. střed souměrnosti) je takové zobrazení, které zobrazuje střed na sebe sama a bod různý od na bod , který se nachází na polopřímce opačné k ve stejné vzdálenosti od jako bod (tj. platí pro něj ).

Objekt (ať již na přímce, v rovině nebo v prostoru) označujeme za středově souměrný, pokud je v nějaké středové souměrnosti obrazem sebe sama. Střed této středové souměrnosti pak nazýváme středem souměrnosti objektu.

Středová souměrnost v prostoru se středem v počátku souřadné soustavy se též nazývá prostorová inverze.

Příklady

Příklad středově souměrného útvaru

Vlastnosti

Středová souměrnost s pevně daným středem je sama sobě inverzním zobrazením - složením dvou středových souměrností se stejným středem vzniká identita.

Kromě vzdáleností zachovává středová souměrnost v rovině i orientaci - pokud bylo pořadí vrcholů v trojúhelníku po směru hodinových ručiček, pak pořadí jejich obrazů ve středové souměrnosti je opět po směru hodinových ručiček (což je něco, co neplatí například pro osovou souměrnost).

Středová souměrnost se středem v bodě je v rovině shodná s otočením o 180 stupňů podle středu . Trochu jiná je situace v prostoru, kde nemá smysl mluvit o otočení kolem bodu, ale kolem osy.

Středová souměrnost je involucí, neboť bod je samodružný a každá přímka procházející tímto bodem je také samodružná.

Související články

Externí odkazy

Odkazy

  • POMYKALOVÁ E. a kol., 2010: Matematika pro gymnázia - Stereometrie. Praha: Prometheus.
  • BOČEK L., KOČANDRLE M., SEKANINA M., ŠEDIVÝ J., 1980. Geometrie II. Praha: SPN.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.