Riemannov integrál

Riemannov integrál, pomenovaný podľa nemeckého matematika Bernharda Riemanna, je v matematickej analýze historicky prvá rigorózna definícia pojmu integrál funkcie na intervale. Aj keď je Riemannov integrál pre niektoré teoretické úlohy menej vhodný, je to jedna z najjednoduchších definícii integrálu. Niektoré z týchto technických ťažkostí sa dajú vyriešiť Riemannovým-Stieltjesovým integrálom a väčšina z nich Lebesgueovým integrálom.

Úvod

Obrázok 2

Nech je nezáporná reálna funkcia na intervale a nech je plocha pod touto funkciou na intervale (pozri Obrázok 2). Zaujíma nás obsah plochy . Hneď ako ju vypočítame, označíme ju symbolom:

Základnou myšlienkou Riemannovho integrálu je použiť veľmi jednoduché aproximácie tejto plochy. Získaním stále lepších a lepších aproximácií môžeme povedať, že "v limite" dostaneme presne plochu pod krivkou.

Je potrebné poznamenať, že na intervaloch, kde funkcia môže nadobúdať tak kladné, ako aj záporné hodnoty, integrál bude korešpondovať so znamienkovým obsahom, čiže obsahom plochy nad osou mínus obsahom plochy pod ňou.


Postupnosť Riemannových súčtov. Čísla vpravo hore sú obsahy šedých obdĺžnikov. Konvergujú k integrálu funkcie.

Definícia Riemannovho integrálu

Delenia intervalu

Delenie intervalu je každá konečná postupnosť . Každý z intervalov sa nazýva podinterval delenia. Norma delenia je definovaná ako dĺžka najdlhšieho podintervalu , teda je to , kde .

Značené delenie intervalu je delenie intervalu spolu s konečnou postupnosťou čísel , pre ktorú platí, že pre každé , . Inými slovami to je delenie, ktorého každý podinterval obsahuje jeden bod. Norma značeného delenia sa definuje rovnako ako norma obyčajného delenia.

Predpokladajme ďalej, že spolu s je značené delenie intervalu a že spolu s je iné značené delenie toho istého intervalu. Hovoríme, že spolu s je zjemnením delenia spolu s , ak pre každé celé číslo , , existuje celé číslo také, že a také, že pre niektoré with . Zjednodušene povedané, zjemnenie značeného delenia je značené delenia, ktoré ma viacero značiek, ale má aj všetky pôvodné.

Na množine všetkých značených delení môžeme definované čiastočné usporiadanie nasledovne: jedno značené delenie je väčšie ako iné značené delenie, keď to väčšie je zjemnením menšieho.

Riemannove súčty

Zvoľme si reálnu funkciu definovanú na intervale . Riemannovým súčtom funkcie vzhľadom na značené delenie spolu s je suma:

Každý člen sumy je súčinom hodnoty funkcie v danej značke a dĺžky intervalu. Geometricky každý člen teda zodpovedá obsahu obdĺžnika výšky a dĺžky . Riemannov súčet je znamienkový obsah pod všetkými takýmito obdĺžnikmi.

Riemannov integrál

Voľne povedané, Riemannov integrál je limita Riemannových súčtov funkcie pre stále jemnejšie a jemnejšie delenia. Avšak povedať presne, čo myslíme pod "jemnejšie a jemnejšie", je trochu zložitejšie.

Jeden dôležitý fakt je, že normy delení musia stále klesať, takže ich limita je nulová. Keby to tak nebolo, nedostávali by sme dobré aproximácie na niektorých podintervaloch. Toto však stále nestačí na definovanie integrálu. Aby sme boli konkrétni, hovoríme, že Riemannov integrál funkcie sa rovná , ak platí nasledujúca podmienka:

Pre každé existuje taká, že pre ľubovoľné značené delenie a , ktorého norma je , platí

S touto definíciou je však veľmi nepohodlné pracovať. Vypracujeme preto alternatívnu definíciu a následne dokážeme, že je rovnaká ako táto, ktorú sme práve napísali. Naša nová definícia hovorí, že Riemannov integrál funkcie sa rovná , ak platí podmienka:

Pre každé existuje značené delenie spolu s také, že pre každé jeho zjemnenie a platí:

Inak povedané, Riemannove súčty vzhľadom na postupne zjemňujúce sa intervalu konvergujú k . Táto definícia je v skutočnosti špeciálnym prípadom všeobecnejšieho pojmu topologickej siete.

Ako sme už povedali, tieto dve definície sú ekvivalentné. Aby sme ukázali, že z prvej definície vyplýva druhá, zoberme nejaké a zvoľme , ktorého existenciu zaručuje podmienka definície. Zvoľme si ľubovoľné delenie, ktorého norma je menšia ako . Jeho Riemannov súčet sa nachádza od vo vzdialenosti menšej ako a každé jeho zjemnenie bude mať taktiež normu menšiu ako , čiže jeho Riemannov súčet tiež vzdialený najviac od . Na to, že z druhej definície vyplýva prvá, je pohodlnejšie pracovať s Darbouxovým integrálom. Najprv sa však musí ukázať, že druhá definícia je ekvivalentná s definíciou Darbouxovho integrálu; dôkaz je uvedený v článku o Darbouxovom integráli. Teraz dokážeme, že darbouxovsky integrovateľné funkcie vyhovujú prvej definícii. Zvoľme delenie také, že dolné a horné Darbouxove súčty vzhľadom na toto delenie nie sú vzdialené od hodnoty Darbouxovho integrálu o viac ako . Nech sa rovná , kde a suprémom a infimom funkcie na a nech je menšia ako obe hodnoty a . Potom nie je ťažké ukázať, že Riemannov súčet funkcie vzhľadom na ľuboľné značené delenie normy menšej ako bude v rámci od horného alebo dolného Darbouxovho súčtu, takže celkovo bude vo vzdialenosti menšej ako od .

Externé odkazy

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.