Cykloida

Cykloida je transcendentní cyklická křivka, kterou vytvoří bod pevně spojený s kružnicí, která se valí (kutálí) po přímce.

Cykloida generovaná valícím se kolem

Cykloida má tvar donekonečna se opakujících oblouků.

Prostá cykloida

Prostá cykloida

Pokud bod pevně spojený s kružnicí leží na jejím obvodu, pak při valení této kružnice po přímce opisuje tento bod prostou (obecnou, obyčejnou) cykloidu.

Prostou cykloidu lze vyjádřit parametricky:

,
,

kde je poloměr kružnice a parametr je úhel otočení kutálející se kružnice.

První, resp. druhou polovinu prvního oblouku prosté cykloidy lze vyjádřit v explicitním tvaru

pro , resp.

pro .

Perioda cykloidy je .

Délka oblouku dané větve prosté cykloidy od hrotu do bodu pro je

.

Dosazením periody získáme pro délku jedné větve prosté cykloidy výraz

.

Obsah plochy ohraničené jednou větví prosté cykloidy je

.

Poloměr křivosti v bodě různém od hrotu prosté cykloidy je

,

takže poloměr křivosti ve vrcholu je maximální:

.

Nejjednodušší přirozená rovnice prosté cykloidy je

kde však oblouk počítáme od vrcholu.

Evolutou cykloidy je shodná cykloida, která je ve směru osy posunuta o souhlasně s původní cykloidou a ve směru osy je posunuta o nesouhlasně s orientací původní cykloidy.

Zkrácená a prodloužená cykloida

Zkrácená cykloida
Prodloužená cykloida

Pokud bod pevně spojený s kutálející se kružnicí neleží na obvodu této kružnice, ale jeho vzdálenost od středu kružnice o poloměru je , pak pro získáme cykloidu zkrácenou a pro cykloidu prodlouženou.

Parametrické rovnice zkrácené, resp. prodloužené cykloidy lze zapsat ve tvaru

Vlastnosti

Související články

Externí odkazy

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.