Chézyho rovnice
Chézyho rovnice je vztahem pro výpočet rychlosti vody v otevřeném korytě. Rovnici odvodil roku 1775 francouzský inženýr Antoine de Chézy. Některé prameny, např. [1] však udávají datum dřívější, již 1769. Starší evropská literatura uvádí, že ještě před Chézym ji odvodil Brahms roku 1753. Ohledně autorství bylo zřejmě nejasno již počátkem 20. století; např. Tolman[2] uvádí Brahmse jako prvotního autora s velkým otazníkem, zatímco jiné prameny z této doby, ač rovnici uvádějí pod jménem Chézyho, o Brahmsově autorství nepochybují.
Rovnice má tvar:
kde označuje rychlost, hydraulický poloměr (m), sklon čáry energie (pro rovnoměrné proudění je roven podélnému sklonu dna koryta) a je Chézyho rychlostní součinitel (m0,5·s−1), který lze určit podle řady různých vzorců. Je třeba zdůraznit, že Chézyho rovnice byla odvozena a platí pouze v kvadratickém pásmu odporů proudění.
Po dosazení do rovnice kontinuity získáme vztah pro průtok:
kde je průtočná plocha (m2) a je modul průtoku (m3s−1)
Pro výpočet rychlosti proudění v otevřeném korytě kromě Chézyho rovnice existují i další vztahy, např. Manningova rovnice a další, založené na různých základech. Z nich jsou zajímavé některé empirické rovnice bez členu, vyjadřujícího hydraulickou drsnost koryta, tzv. rovnice bez součinitele drsnosti.
Reference
- Chow, Ven Te (1959):Open-Channel Hydraulics. McGraw-Hill (reiss. 1988)
- Tolman, B. (1908): O Pohybu vody v korytech otevřených. Praha:ČMT.