Osmičková soustava

Osmičková (oktalová, oktální) soustava je číselná soustava o základu 8, která (v tradičním zápisu) může obsahovat cifry 0, 1, 2, 3, 4, 5, 6 a 7.

Díky tomu, že je oktální soustava snadno převeditelná do binární soustavy (8 je mocninou dvojky), často se používala v oblasti informatiky.[zdroj?] Příkladem může být nastavení přístupových práv v operačních systémech unixového typu.

Převody čísel

Převod z desítkové do osmičkové soustavy

Metoda postupného dělení 8 je používána pro převod celých čísel v desítkové soustavě do soustavy osmičkové a spočívá v postupném dělení číslem 8. Původní číslo celočíselně vydělíme číslem 8 a zvlášť si zapisujeme zbytky po tomto dělení – označme je jako , kde značí pořadí zbytku. Vzniklý podíl dále dělíme číslem 8 (a zapisujeme si zbytky po dělení) dokud podíl není roven nule. Po skončení dělení dostaneme číslo v osmičkové soustavě zapsáním pořadí zbytků v opačném pořadí (protože číslo zapisujeme zprava doleva, ale čteme zleva doprava)

Například: Mějme číslo 900 v desítkové soustavě, které chceme převést do osmičkové soustavy. Nechť symbol znamená celočíselné dělení.

900 div 8 = 112 a = 4

112 div 8 = 14 a = 0

14 div 8 = 1 a = 6

1 div 8 = 0 a = 1

Zbytky po dělení zapisujeme zprava doleva – avšak číslo čteme zleva doprava. (Pořadí zbytků po dělení je 4, 0, 6, 1 ale zapisujeme je v pořadí 1, 6, 0, 4)

Výsledkem je: (900)10 = (1604)8

Vybrané zlomky v osmičkové soustavě

(1/2)10 = (0,4)8
(1/4)10 = (0,2)8
(1/8)10 = (0,1)8
(1/10)10 = (0,06341634163416341...)8
(1/16)10 = (0,04)8
(1/20)10 = (0,0314631463146...)8

Převod z osmičkové do desítkové soustavy

Převod z osmičkové soustavy do desítkové je konkrétním použitím obecného vztahu

Například: Mějme číslo 2007 v osmičkové soustavě, které chceme převést do soustavy desítkové. Úpravou obecného vztahu do podoby získáváme efektivní nástroj pro převod. (Opět pamatujme že číslo je zapsáno zprava doleva)

Výsledkem je: (2007)8 = (1031)10

Převod z osmičkové do binární soustavy

Převod mezi těmito soustavami je značně ulehčen díky tomu, že číslo 8 je mocninou dvojky. Jednoduše nahradíme každou číslici za její binární reprezentaci. Pro převod můžeme s výhodou použít následující tabulky:

Osmičková číslice 0 1 2 3 4 5 6 7
Binární reprezentace 000 001 010 011 100 101 110 111

Například: Převod čísla (1572)8 do dvojkové (binární) soustavy.

1 = 001

5 = 101

7 = 111

2 = 010

Výsledkem je: (1572)8 = (001101111010)2

Převod z binární do osmičkové soustavy

Převod je opět poměrně jednoduchý – zápis čísla v binární soustavě rozdělíme na skupiny po 3 bitech a pomocí předchozí tabulky převedeme na číslo v osmičkové soustavě.

Například: Převod čísla (011 111 011 000)2 do osmičkové soustavy.

011 = 3

111 = 7

011 = 3

000 = 0

Výsledkem je: (011 111 011 000)2 = (3730)8

Převod z osmičkové do hexadecimální soustavy

Převod mezi těmito dvěma soustavami je řešen pomocí 2 kroků. V prvním kroku převedeme číslo v osmičkové soustavě do soustavy binární, které ve druhém kroku převedeme do soustavy hexadecimální.

Související informace naleznete také v článku Hexadecimální soustava.

Převod z hexadecimální do osmičkové soustavy

Související informace naleznete také v článku Hexadecimální číslo.

Tento převod je také řešen pomocí 2 kroků, kdy v prvním kroku převedeme číslo v hexadecimální soustavě do soustavy binární a následně provedeme převod z binární do osmičkové soustavy.

Srovnání číselných soustav

Číselná soustava (základ)
102345678912162036
1111111111111
21022222222222
311103333333333
41001110444444444
510112111055555555
6110201211106666666
71112113121110777777
8100022201312111088888
910011002114131211109999
101010101222014131211AAAA
10011001001020112104002442021441218464502S
100011111010001101001332201300043442626175013316B43E82A0RS

Odkazy

Související články

Externí odkazy

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.