Laméovy koeficienty (křivočaré souřadnice)
Laméovy koeficienty (též Lamého koeficienty[1]) jsou v matematice výrazy, které udávají vztah mezi i-tým bázovým vektorem a derivací podle i-té souřadnice . Vyskytují se ve vzorcích pro výpočet gradientu, divergence a rotace v jiných než kartézských souřadnicích. V případě ortogonálních souřadnic jsou vektory derivace podle souřadnice a gradient souřadnice rovnoběžné a podíl jejich délek je kvadrát odpovídajícího Lamého koeficientu.[2]
Definice
Mějme n-rozměrný afinní prostor (tedy například trojrozměrný euklidovský prostor) a na něm zavedené souřadnice . Dokážeme tedy vyjádřit zobrazení , které n-tici souřadnic přiřadí jim odpovídající bod z . Je-li toto zobrazení diferencovatelné, Lamého koeficienty až definujeme jako:
Každý Lamého koeficient je tedy vlastně skalární pole. Protože závislost na konkrétních souřadnicích je zřejmá z definice, je zvykem místo psát pouze .
Protože se bázové vektory definují jako jednotkové vektory ve směru , platí:
Jsou-li souřadnice navíc ortogonální, tedy platí-li pro každé (zde nám již nestačí afinní prostor, potřebujeme unitární prostor se skalárním součinem), potom navíc platí:
kde je polohový vektor v kartézských souřadnicích a předpokládáme, že a .
Reference
- KRTOUŠ, Pavel. Klasická elektrodynamika. [s.l.]: [s.n.], 2019. Kapitola Matematický formalismus.
- LEDVINKA, Tomáš. Poznámky k přednášce Klasická elektrodynamika. [s.l.]: [s.n.], 2020. Dostupné online.