Aritmetická posloupnost

Aritmetická posloupnost je druh matematické posloupnosti, kde je stálý rozdíl mezi sousedními členy. Tento rozdíl mezi libovolným členem kromě prvního a předcházejícím členem se obvykle značí d a nazývá diference.

Aritmetickou posloupnost lze chápat jako lineární funkci definovanou v oboru přirozených čísel a proto i pro svou jednoduchost je jedním z nejdůležitějších typů posloupností.

Zobecněním je aritmetická posloupnost vyššího řádu (někdy též vyššího stupně), jejíž i-tý člen lze vyjádřit jako hodnotu nějakého pevného polynomu pro dané i. Řád aritmetické posloupnosti pak definujeme jako stupeň tohoto polynomu, přičemž posloupnost samých nul má řád -1.[1]

Vzorce

V následujících vzorcích označuje n-tý člen aritmetické posloupnosti a d její diferenci.

Rekurentní zadání

  • známe některý člen a jeho index:
  • známe rekurentní vzorec vyjadřující, že sousední členy se liší o konstantu:

Zadání vzorcem pro n-tý člen

Vyjádření r-tého členu z s-tého

Součet prvních n členů

Odvození vzorce pro součet prvních n členů

Součet prvních členů aritmetické posloupnosti lze spočítat následovně:

Napišme součet znovu, ale v obráceném pořadí sčítanců:

Vidíme, že součty odpovídajících členů "pod sebou" jsou stejné:

Příklad

Například je-li a , pak několik prvních členů aritmetické posloupnosti je: -5, -2, 1, 4, 7, 10, 13, …

Souvislost s aritmetickým průměrem

Pro aritmetickou posloupnost platí, že každý člen kromě prvního je aritmetickým průměrem obou sousedních členů:

Obráceně pokud tato vlastnost platí pro všechny členy posloupnosti počínaje druhým, tak se jedná o aritmetickou posloupnost (důkaz např. matematickou indukcí).

Souvislost s geometrickou posloupností

Je-li posloupnost aritmetická, tak je posloupnost geometrická (pro libovolný základ b≥0).

Je-li posloupnost geometrická s kladnými členy, tak je posloupnost aritmetická (pro libovolný základ b>0, b≠1).

Aritmetická řada

Součet členů aritmetické posloupnosti je označován jako aritmetická řada. Kromě případu posloupnosti samých nul je řada divergentní.

Součet aritmetické řady je dán jako limita posloupnosti n-tých částečných součtů. Platí tedy

,

kde kladné znaménko platí pro anebo a záporné pro anebo .

Pro je součet

Odkazy

Reference

  1. DLAB, Vlastimil. Aritmetické posloupnosti vyšších řádů [online]. MFF UK [cit. 2015-03-17]. Dostupné online.

Související články

Externí odkazy

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.