Aritmeticko-geometrická posloupnost

Aritmeticko-geometrická posloupnost je posloupnost, která je součinem aritmetické a geometrické posloupnosti, neboli posloupnost daná předpisem

,

kde

Příklad

Příkladem aritmeticko-geometrické posloupnosti je

Vlastnosti

Protože konstantní posloupnost (samých jedniček) je zároveň aritmetická i geometrická, je aritmeticko-geometrická posloupnost zobecněním obou těchto elementárních typů posloupností.

Posloupnost částečných součtů lze najít poměrně snadno podobným postupem jako v případě geometrické posloupnosti.

Použití

A.-g. posloupnosti se vyskytují jako řešení lineárních rekurentních rovnic 2. a vyššího řádu s konstantními koeficienty v případě násobného kořene charakteristické rovnice.

Vyskytují se v praxi například ve financích při výpočtu počáteční nebo koncové hodnoty aritmeticky rostoucích nebo klesajících důchodů.

Související články

Literatura

  • Calda Emil. Posloupnosti a nekonečné řady. [s.l.]: [s.n.] Dostupné v archivu pořízeném dne 2012-11-28.
  • BERAN, Ladislav. Prověřte si své matematické nadání. 2. vyd. Praha: SNTL, 1989. 159 s.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.