Weierstrassova funkce

Weierstrassova funkce, pojmenovaná po německém matematikovi Karlu Weierstrassovi, je matematická funkce, která je ve všech bodech spojitá, ale v žádném bodě nemá derivaci (není nikde hladká).

Weierstrassova funkce s konstantami ;

Funkce se chová jako fraktál, neboť zvětšené části grafu a původní graf jsou podobné.[1]

Definice

Weierstrassova funkce bývá uváděna v různých tvarech s různými konstantami.

kde , je kladné liché číslo a konstanty splňují následující podmínku.
Později bylo dokázáno, že poslední uvedenou podmínku lze nahradit podmínkou .
Riemannova funkce,
přičemž údajně podle původní publikace . Tato funkce má však v určitých izolovaných bodech konečné derivace. Podle jiných zdrojů[2] je tato funkce nazývána Riemannova, neboť podle Weierstrasse ji Bernhard Riemann uváděl na svých přednáškách okolo roku 1861.
  • Lze nalézt i jiné tvary nebo konkrétní konstanty.[1][3]

Související články

Externí odkazy

Reference

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.