Varignonova věta

Varignonova věta je v euklidovské geometrii věta, která se zabývá konstrukcí konkrétního rovnoběžníku, varignonského rovnoběžníku, z libovolného čtyřúhelníku (čtyřúhelníku). Věta je pojmenována po Pierru Varignonovi, který ji publikoval v roce 1731.

Obsah Varignonova rovnoběžníku EFGH = polovině obsahu čtyřúhelníku ABCD

Věta

Středy stran libovolného čtyřúhelníku tvoří rovnoběžník. Je-li čtyřúhelník konvexní nebo konkávní (ne komplexní), pak plocha rovnoběžníku je polovinou plochy čtyřúhelníku.

konvexní čtyřúhelník konkávní čtyřúhelník překřížený čtyřúhelník

Varignonův rovnoběžník

Vlastnosti

Rovinný Varignonův rovnoběžník má také následující vlastnosti:

  • Každá dvojice protilehlých stran Varignonova rovnoběžníku je rovnoběžná s úhlopříčkou v původním čtyřúhelníku.
  • Strana Varignonova rovnoběžníku je poloviční, pokud je úhlopříčka v původním čtyřúhelníku rovnoběžná.
  • Obsah Varignonova rovnoběžníku se rovná polovině obsahu původního čtyřúhelníku. Toto platí pro konvexní, konkávní a překřížené čtyřúhelníky za předpokladu, že tato oblast je definována jako rozdíl obsahů dvou trojúhelníků, ze kterých se skládá. [1]
  • Obvod Varignonova rovnoběžníku se rovná součtu úhlopříček původního čtyřúhelníku.
  • Úhlopříčky Varignonova rovnoběžníku jsou střední příčky původního čtyřúhelníku.

Délka střední příčky, která v konvexním čtyřúhelníku se stranami a, b, c a d spojuje středy stran a a c, je

,

kde p a q jsou délky úhlopříček.[2] Délka střední příčky, která spojuje středy stran b a d, je

[3] :s.p.126

.

Délka bimediánů (středních příček) může být také vyjádřena dvěma protilehlými stranami a vzdáleností x mezi středy úhlopříček. To je možné při použití Eulerova čtyřúhelníkového teorému ve výše uvedených vzorcích; odkud

a

V konvexním čtyřúhelníku je následující spojení mezi středními příčkami a úhlopříčkami:

  • Dvě střední příčky mají stejnou délku, pokud a jen tehdy, jsou-li dvě úhlopříčky kolmé.
  • Dvě střední příčky jsou kolmé, pokud a pouze pokud mají dvě úhlopříčky stejnou délku.

Speciální případy

Varignonův rovnoběžník je kosočtverec jestliže dvě úhlopříčky čtyřúhelníku mají stejnou délku, tj. čtyřúhelník je equidiagonální.

Varignonův rovnoběžník je obdélník jestliže úhlopříčky čtyřúhelníku jsou kolmé, tj. čtyřúhelník je orthodiagonální.

Odkazy

Reference

V tomto článku byl použit překlad textu z článku Varignon's theorem na anglické Wikipedii.

  1. Coxeter, H. S. M. and Greitzer, S. L. "Quadrangle; Varignon's theorem" §3.1 in Geometry Revisited.
  2. Mateescu Constantin, Answer to Inequality Of Diagonal
  3. Altshiller-Court, Nathan, College Geometry, Dover Publ., 2007.

Externí odkazy

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.