Polospojitost

Přesněji polospojitost shora a polospojitost zdola jsou pojmy používané v matematické analýze. Jsou to vlastnosti reálných funkcí, které jsou slabší než spojitost, nicméně dány dohromady již spojitost implikují. Každá z nich je tedy sama o sobě jen „půl spojitosti“. Zhruba řečeno reálná funkce f je shora polospojitá v bodě x, pokud pro body y blízké bodu x není f(y) o moc větší než f(x). Funkce f je zdola polospojitá, když v předchozím místo větší řekneme menší.

Přesná definice

Shora polospojitá funkce.

Polospojitost shora

  • Funkce f z topologického prostoru X do reálných čísel je shora polospojitá v bodě x z X, pokud pro každé ε>0 existuje okolí U bodu x, že kdykoliv .
Ekvivalentně můžeme říci, že f je shora polospojitá v x, pokud .
  • Funkce f je shora polospojitá v X , jestliže je shora polospojitá v každém bodě prostoru X. Je to právě tehdy, když jsou všechny množiny tvaru (kde a je nějaké reálné číslo) otevřené.

Polospojitost zdola

Zdola polospojitá funkce.
  • Funkce f z topologického prostoru X do reálných čísel je zdola polospojitá v bodě x z X, pokud pro každé ε>0 existuje okolí U bodu x, že kdykoliv .
Ekvivalentně můžeme říci, že f je zdola polospojitá v x, pokud .
  • Funkce f je zdola polospojitá v X , jestliže je zdola polospojitá v každém bodě prostoru X. Je to právě tehdy, když jsou všechny množiny tvaru (kde a je nějaké reálné číslo) otevřené.


Vlastnosti

  • ukazuje, že pokud je f v x polospojitá shora i zdola, je již v x spojitá a (samozřejmě) i obráceně.
  • součet
  • Protože , je supremum libovolného systému zdola polospojitých funkcí opět zdola polospojité. Totéž platí, zaměníme-li slůvko zdola za shora a supremum za infimum.
  • Naopak supremum shora polospojitých (nebo dokonce spojitých) funkcí nemusí být shora polospojité, jak ukazuje příklad .

Mnemotechnika

Je zajímavé, že naprosté většině lidí činí problémy zapamatovat si, která polospojitost je která.

Příklady

Související články

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.