Piezoelektrický jev
Piezoelektrický jev (z řeckého piezein (πιέζειν) – tlačit) je schopnost krystalu generovat elektrické napětí při jeho deformování. Může se vyskytovat pouze u krystalů, které nemají střed symetrie. Nejznámější piezoelektrickou látkou je monokrystalický křemen, křišťál. Poprvé byl piezoelektrický jev pozorován u Seignettovy soli (tetrahydrát vinanu draselno-sodného). Opačný jev, kdy se krystal ve vnějším elektrickém poli deformuje se nazývá nepřímý piezoelektrický jev. Další jev zvaný elektrostrikce, ačkoliv je nepřímému piezoelektrickému jevu podobný, jedná se o proces samostatný.
Vznik piezoelektrického jevu
Jev lze vysvětlit mikroskopicky: Deformací se ionty opačných nábojů posunou v krystalové mřížce tak, že elektrická těžiště záporných a kladných iontů, která se v nezdeformovaném krystalu nacházejí ve stejném bodě, se od sebe vzdálí. Na určitých plochách krystalu se objeví elektrický náboj.
Při obráceném piezoelektrickém jevu, dochází pod vlivem elektrického pole k deformaci. Míru deformace krystalu konkrétní látky popisuje piezoelektrická konstanta.
Piezolektrickému jevu je podobný jev elektrostrikce. Elektrostrikční jev se však na rozdíl od jevu piezoelektrického projevuje ve všech dielektrických materíálech (dielektrikum) a se změnou znaménka elektrického pole při něm nedochází ke změně směru deformace. [1]
S deformací krystalické mřížky působením vnější síly souvisí i změna měrného elektrického odporu. Tento je označován jako piezorezistivní jev.
Při vysokých teplotách dochází u jakéhokoliv materiálu ke ztrátě piezoelektrických vlastností, protože je narušeno uspořádání iontů. K této změně dochází skokově, podobně jako ke změně skupenství. (Viz fázový přechod.) Přechodová teplota je charakteristická pro daný materiál a nazývá se Curieova teplota.
Využití piezoelektrického jevu
Obvykle se udává, že piezoelektrický jev byl objeven v letech 1880 (Pierre a Jacques Curie).[1]
Přímý piezoelektrický jev se využívá např. u zapalovačů, v gramofonových přenoskách, v piezoelektrických mikrofonech. Piezorezistivní jev je využíván například v polovodičových tenzometrech.
Využití obráceného piezoelektrického jevu je založeno na působení elektrického pole na krystal. Je-li pole časově periodicky proměnné s kmitočtem, který odpovídá kmitočtu vlastních elastických kmitů krystalu, vzniká mechanická rezonance.
Přímý i obrácený (nepřímý) piezoelektrický jev se využívá například v lékařských sonografech, generujících ultrazvuk. Velmi rozsáhlé možnosti využití pizoelektrického jevu zajistila také oblast digitálních tiskáren. U těchto se momentálně využívá tzv. termo principu (hlavním zástupcem je společnost HP) a právě piezo (Epson). Výhodou piezoelektrické technologie je fakt, že u ní nedochází k zahřívání inkoustu a proto lze tisknout i velmi agresivními médii, jakými jsou solventní (ředidlové) inkousty, UV inkousty (k jejich vytvrzení dochází až po dopadu na tiskové médium pomocí UV záření) a nebo například inkousty, u kterých by při zahřátí v tiskové hlavě došlo k degradaci – sublimační inkousty.
Další aplikace
Sonar byl vyvinut v první světové válce jako jedna z prvních piezoaplikací, pro detekci objektů v moři.
SONAR, angl.SOund Navigation And Ranging (zvuková navigace a zaměřování) je obdobou:
- RADARu (RAdio Detection And Ranging) nebo -
- LIDARu (Laser lluminated Detection And Ranging)
Sonar využívají například
- netopýři (echolokace)
- ponorky, protože rádiové vlny mají pod vodou výrazně menší dosah než na souši
- zdravotníci – neinvazivní prohlížení orgánů, plodu atp.
Povrchová akustická vlna je základem součástek s povrchovou akustickou vlnou, které využívají generování a detekci povrchové akustické vlny na piezoelektrickém substrátu. Tyto součástky mají řadu aplikací (filtry, rezonátory atp.)
Reference
- PETRŽÍLKA, Václav; BARTOLOMĚJ, Slavík. Piezoelektřina a její použití v technické praxi. [s.l.]: Jednota českých matematiků a fysiků, 1940.
Související články
Externí odkazy
- Obrázky, zvuky či videa k tématu piezoelektrický jev na Wikimedia Commons
- Encyklopedické heslo Piezoelektřina v Ottově slovníku naučném ve Wikizdrojích