Kvádr
Kvádr je trojrozměrné těleso – rovnoběžnostěn, jehož stěny tvoří šest pravoúhlých čtyřúhelníků (zpravidla obdélníků, ale existují i speciální případy jako např. čtverec). Má tři skupiny rovnoběžných hran shodné délky.
Kvádr | |
---|---|
Objem | |
Povrch | |
Obrazec stěny | obdélník |
Počet vrcholů | 8 |
Počet hran | 12 |
Počet stěn | 6 |
Úhel u vrcholu | 90° |
Poloměr opsané kulové plochy | - |
Poloměr vepsané kulové plochy | - |
Duální mnohostěn | - |
Vlastnosti
Výpočty
Objem a povrch kvádru lze vypočítat z délky jeho hran jako:
Kvádr má tři různé délky stěnových úhlopříček, které jsou vlastně délkou úhlopříčky obdélníka ve vztahu k jeho stranám, a počítají se z Pythagorovy věty:
Všechny čtyři tělesové úhlopříčky jsou stejně dlouhé a protínají se ve středu souměrnosti. Délku tělesové úhlopříčky kvádru (tj. vzdálenost dvou vrcholů, které neleží ve stejné stěně) lze vypočítat rovněž z Pythagorovy věty:
Kvádr má šest stěn obdélníkového tvaru (ve speciálních případech 2 čtvercové + 4 obdélníkové nebo 6 čtvercových) z nichž dvě protilehlé jsou vždy shodné, osm vrcholů a dvanáct hran z nichž čtveřice rovnoběžných má vždy shodnou délku.
Souměrnost
Kvádr je středově souměrný podle průsečíku svých úhlopříček.
Kvádr je osově souměrný podle tří os – spojnic středů protilehlých stěn.
Kvádr je rovinově souměrný podle tří rovin. Každá z těchto rovin je rovnoběžná s některou ze stěn kvádru a prochází průsečíkem úhlopříček kvádru.
Další vlastnosti
Každé dvě stěny kvádru jsou rovnoběžné nebo kolmé.
Speciální případy
Pravidelný čtyřboký hranol
Speciálním případem kvádru pro je pravidelný čtyřboký hranol. Ten má nejméně jednu dvojici protilehlých stěn čtvercovou – mluvíme o ní jako o základně nebo podstavě. O zbývajícím (potenciálně různém) rozměru pak mluvíme jako o výšce hranolu .
Vzorce pro objem a povrch se nám v tomto případě zjednodušují na:
Literatura
- Marcela Palková a kolektiv: Průvodce matematikou 2, Didaktis, Brno 2007, ISBN 978-80-7358-083-4, str. 114–115
Externí odkazy
- Obrázky, zvuky či videa k tématu kvádr na Wikimedia Commons
- Slovníkové heslo kvádr ve Wikislovníku