Bezesporná teorie

Bezesporná teorie (také konzistentní teorie) je označení používané v matematické logice pro formální teorii, která neobsahuje spor; v opačném případě se používá označení sporná teorie.

Definice

Teorie je sporná, je-li v dokazatelná nějaká sentence (tedy uzavřená formule) i její negace. Není-li teorie sporná, říkáme, že je bezesporná neboli konzistentní. Za spor se v teorii T považuje každá formule, která je v T dokazatelná spolu se svojí negací.

Vlastnosti

Následující vlastnosti teorie T jsou ekvivalentní (v logice s rovností):

Tedy teorie obsahující spor je v „klasické“ logice nejsilnější teorií (ve smyslu velikosti množiny dokazatelných formulí), neboť dokazuje každé tvrzení. Dále platí:

Relativně bezesporná teorie

Je-li T teorie a S její rozšíření, pak S je relativně bezesporná vůči T, pokud platí, že je-li T bezesporná, pak je bezesporná i S.

Tento pojem se často používá u rozšíření ZF a ZFC, neboť díky Gödelovým větám o neúplnosti je nemožné dokázat jejich bezespornost.

Příklad: Studiem konstruovatelných množin lze ukázat, že je-li ZF bezesporná, pak je bezesporná i ZF+CH. Bezespornost ZF však nelze dokázat. Proto je ZF+CH relativně bezesporná vzhledem k ZF.

Související články

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.