Bipartitní graf

Pojmem bipartitní graf nebo sudý graf[1] se v teorii grafů označuje takový graf, jehož množinu vrcholů je možné rozdělit na dvě disjunktní množiny tak, že žádné dva vrcholy ze stejné množiny nejsou spojeny hranou.

Úplný bipartitní graf K3, 3 s barevně odlišenými partitami

Definice

Graf je bipartitní, pokud platí a . Platí-li navíc (tedy v grafu existují všechny hrany s touto vlastností), nazývá se tento graf úplný bipartitní. Značí se , kde m a n jsou velikosti obou partit.

Vlastnosti

  • obě partity grafu jsou podle definice nezávislé množiny a graf přímo implikuje jedno možné 2-obarvení
  • platí i obrácené tvrzení - všechny dvoubarevné grafy jsou bipartitní
  • jednoduchým algoritmem lze v lineárním čase zjistit, zda je daný graf bipartitní a také nalézt jeho 2-obarvení (průchodem do hloubky)
  • každý strom je bipartitní
  • graf je bipartitní právě tehdy, neobsahuje-li kružnici liché délky

K-partitní graf

Pojem bipartitnosti lze zobecnit na libovolné . Je-li G = (V, E) graf a V lze rozložit na k disjunktních podmnožin takových, že žádné dva vrcholy ze stejné podmnožiny nejsou spojeny hranou, pak tento graf nazýváme k-partitním grafem. Je-li tento graf úplný (ve stejném smyslu jako úplný bipartitní graf, viz výše) a počty vrcholu v jednotlivých partitách jsou , pak se tento graf značí a nazývá se úplný k-partitní graf.

Související články

Odkazy

Reference

  1. SEDLÁČEK, Jiří. Úvod do teorie grafů. Praha: Academia, 1977. Kapitola 15.Chromatické číslo.

Externí odkazy

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.