Algebraický výraz

Algebraický výraz je každý matematický zápis, který je tvořen z matematických symbolů, čísel, proměnných, výsledků operací a hodnot funkcí, mezi nimiž jsou pomocí matematických operací (např. sčítání, násobení) a závorek vytvořeny smysluplné vztahy.

Definice

Nechť jsou reálná čísla.

Algebraický výraz , stručný zápis je se nazývá polynom (v proměnné x), čísla jsou koeficienty polynomu.[1]

Obory algebraických výrazů

Související informace naleznete také v článcích Číslo, sčítání, odčítání, násobení, dělení, umocňování a Polynom.
  • polynomy (česky mnohočleny) s operacemi sčítaní, odčítaní, násobení, mocnění nezáporným celým číslem; koeficienty polynomů mohou být čísla z některého oboru čísel: (celá čísla, racionální čísla,...),
  • racionální lomené výrazy - (rozšíření polynomů o operaci dělení) s operacemi sčítaní, odčítaní, násobení, dělení a mocnění celým číslem
  • rozšíření racionálních lomených výrazů o odmocniny racionální exponenty - pro každé kladné reálné číslo , pro každé celé číslo a pro každé přirozené číslo n je definována mocnina s racionálním exponentem vztahem:   - s operacemi sčítaní, odčítaní, násobení, dělení a mocnění racionálním číslem.

Úpravy algebraických výrazů

Související informace naleznete také v článcích Zlomek, Precedence a Priorita početních operací.

Úprava algebraického výrazu (zjednodušení) je jeho vyjádření jiným (jednodušším) algebraickým výrazem , pro který za podmínek, kdy mají provedené úpravy smysl, platí:  = .

Pro polynomy a celistvé výrazy (algebraický výraz, který nemá ve jmenovateli proměnnou)[2] jsou nejčastěji používané úpravy: krácení výrazu a uvedení na společného jmenovatele. Jednodušším výrazem je výraz s menším počtem členů, závorek, proměnných apod.

Sčítání, odčítání a násobení algebraických výrazů

Související informace naleznete také v článku Polynom.

Zjednodušení algebraických výrazů

Související informace naleznete také v článku Binomická věta.

Pro kvadratický dvojčlen a trojčlen platí:

;

;

;

Rozklad výrazu na součin

Související informace naleznete také v článku Viètovy vzorce.

Rozklad výrazu na součin je vyjádření daného výrazu jako součin jednodušších, většinou již dále nerozložitelných, výrazů.

Příklad:

Rozdělení algebraických výrazů

Související informace naleznete také v článcích Zlomek a Umocňování.

Algebraické výrazy lze dělit:

  • racionální algebraické výrazy, jež neobsahují odmocniny (; );
  • iracionální algebraické výrazy, které obsahují odmocniny

 ; ; [4] Při úpravách iracionálních algebraických výrazů se využívají poznatky o odmocninách a mocninách s racionálními mocniteli a pravidla pro početní operace se zlomky.

Podmínky, pro které mají iracionální algebraické výrazy smysl (je třeba určit vždy před výpočtem výrazu):

  1. jmenovatel musí být různý od nuly
  2. základy sudých odmocnin musí být nezáporné


Usměrňování výrazů (odstranění odmocnin ze jmenovatele), využíváme především vzorce pro rozdíl druhých resp. třetích mocnin, event. součet třetích mocnin viz binomická věta. Příklad: = nebo:

Algebraický lomený výraz, úpravy

Související informace naleznete také v článku Zlomek.

Složený lomený výraz je lomený výraz, který má v čitateli i jmenovateli také lomený výraz: = ; platí že jsou libovolné lomené výrazy, přičemž pro všechny hodnoty proměnných je .

Krácení často provádíme při zjednodušování lomených výrazů. Aby bylo možné lomený výraz krátit, musí být jeho čitatel i jmenovatel zapsán ve tvaru součinu. Pokud tomu tak není, snažíme se lomený výraz nejprve vhodně upravit (což ovšem ne vždy lze). [3]

Hodnota algebraického výrazu

Související informace naleznete také v článku Matematický výraz.

Dosazením do daného výrazu za proměnné reálná čísla, výsledek je číslo, které se nazývá číselná hodnota výrazu.

Určení hodnoty výrazu pro

:

:

Určení hodnoty výrazu pro podmínky:

:

: není třeba počítat - výraz pro hodnotu 1 není definován; výpočtem by ve jmenovateli byla 0

Použití v praxi

S algebraickými výrazy v podobě vzorců se lze setkat nejen v matematice, ale také ve fyzice, chemii, zeměpisu (např. vzorec pro objem kvádru, výpočet rychlosti podle dráhy a času, vzdálenost dvou míst na Zemi podle jejích souřadnic). Užívají se při zápisu řešení slovních úloh.

Algebraický výraz je výraz, v němž se dosazuje za každou proměnnou hodnota z číselného oboru. Existují ale i nealgebraické výrazy (např. ve výrokové logice). Většinou lze z kontextu poznat, kdy výraz je, či není algebraický.[3]

Reference

  1. Základní poznatky z matematiky. www2.karlin.mff.cuni.cz [online]. [cit. 2021-03-16]. Dostupné online.
  2. VOŠICKÝ, Zdeněk. Matematika v kostce pro střední školy. Praha: [s.n.], 2007. ISBN 978-80-253-0191-3.
  3. Základní poznatky z matematiky. www2.karlin.mff.cuni.cz [online]. [cit. 2021-02-03]. Dostupné online.
  4. POLÁK,, Josef. Středoškolská matematika v úlohách I. 1. vydání. vyd. Praha: Prometheus, 1996. 344 s. Dostupné online. ISBN 80-7196-021-7, ISBN 978-80-7196-021-8. OCLC 36882054

Související články

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.