Eulerovský ťah
V teórii grafov sa termínom eulerovský ťah označuje taký ťah, ktorý obsahuje každú hranu grafu práve jeden krát. Zaviedol ho Leonhard Euler, keď sa v roku 1736 pokúšal vyriešiť slávny problém siedmych mostov cez Pregoľu v Kráľovci (nem. Königsberg, dnešný Kaliningrad) vo Východnom Prusku.
Ak existuje v grafe uzavrený eulerovský ťah, nazývame tento graf taktiež eulerovský.[1] Eulerovské grafy je možné nakresliť „jedným ťahom“. Eulerovské grafy majú každý vrchol párneho stupňa.[2]
Definícia
Eulerovský ťah v neorientovanom grafe je taký ťah v ktorom použijeme každú hranu práve raz. Ak takýto ťah existuje graf voláme „prejazdný“ alebo semi-eulerovský.[3]
Ak je neorientovaný graf a postupnosť, pre ktorú platí, že , nazývame túto postupnosť eulerovským ťahom. Ak je , nazývame tento ťah uzavretým.
Vlastnosti
- neorientovaný graf je eulerovský, ak je súvislý a každý jeho vrchol má párny stupeň,
- neorientovaný graf je eulerovský, ak je súvislý a ak má práve 2 vrcholy nepárneho stupňa (eulerov ťah bude potom otvorený),
- neorientovaný graf je eulerovský, ak je súvislý a ide ho rozložiť na hranovo disjunktné cykly.
Referencie
- Základní pojmy z teorie grafů.
- C. L. Mallows, N. J. A. Sloane. Two-graphs, switching classes and Euler graphs are equal in number. SIAM Journal on Applied Mathematics, 1975, s. 876–880. DOI: 10.1137/0128070.
- Jun-ichi Yamaguchi, Introduction of Graph Theory.