Gama funkce

Gama funkce (někdy také označovaná jako Eulerův integrál druhého druhu) je zobecněním faktoriálu pro obor komplexních čísel. Používá se v mnoha oblastech matematiky, především pro popis některých rozdělení ve statistice.

Graf funkce gama pro reálná čísla.

Funkce je značena pomocí řeckého písmene gama a je definována jako holomorfní rozšíření integrálu:

Ačkoliv integrál samotný konverguje jen je-li reálná část z kladná, gama funkce je definována pro libovolné komplexní (a tedy i reálné) číslo, kromě nuly a celých záporných čísel (−1, −2, …).

Vlastnosti

Funkce je spojitá pro . Funkce diverguje pro celá . Tyto body jsou póly prvního řádu a odpovídající rezidua jsou . Jiné singularity nemá a jedná se tedy o funkci meromorfní v celém oboru .

Pro n-tou derivaci platí vztah

.

V oblasti kladných reálných čísel má gama funkce minimum v bodě .

Užitečné vztahy

  • Pro přirozená čísla platí

Některé hodnoty

(nedefinováno)
(nedefinováno)
(nedefinováno)

Grafy

Související články

Externí odkazy

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.