Ferit β

Ferit β je název pro paramagnetickou fázi tuhého roztoku uhlíku v železe alfa, který se vyskytuje nad 760 °C, tzv. Curieova teplota, a která se též označuje jako A2.[1][2][3][4]

Charakteristika

Primární fáze uhlíkových ocelí a většiny litin při pokojové teplotě je feromagnetický ferit α. Při zahřívání slitiny železo-uhlík nad kritickou teplotu A2[5] dochází k tepelné emisi při náhodném pohybu atomů, které překonává orientovaný magnetický moment nepárových elektronových spinů v atomovém obalu.[6] Ferit β je z krystalografického hlediska identický s feritem α, rozdíl tvoří magnetická doména a zvětšený parametr mřížky kubické prostorově středěné struktury, který roste s teplotou,[1][2]. Ten má jen minimální dopad na tepelné zpracování ocelí. Proto se fáze β obvykle neuvažuje jako samostatná fáze, ale pouze jako oblast feritu α za vyšší teploty. Obdobně ani A2 nemá zásadní vliv ve srovnání s eutektoidní teplotou A1 a kritickou teplotou austenitizace A3 resp. Acm.

V binárním diagramu železo-uhlík by technicky měla být oblast nad A2 označovaná jako β + γ místo obvyklého α + γ. Označení fáze, tedy β, je založeno na posloupnosti alotropických modifikací resp. fází slitiny železo-uhlík označovaných písmeny řecké abecedy: železo α resp. ferit α, železo β resp. ferit β, železo γ resp. austenit, železo δ resp. ferit δ (vysokoteplotní modifikace železa α resp. feritu α), železo ε (stabilní za působení vysokého tlaku).

Vliv teploty A2 na indukční ohřev

Ferit β a teplota A2 jsou velmi důležité faktory pro indukční ohřev oceli, stejně jako pro povrchové kalení. Pro kalení a popouštění jsou oceli většinou autentizovány při teplotě 900–1000 °C. Vysokofrekvenční střídavé magnetické pole indukčního ohřevu ohřívá ocel dvěma mechanismy pod Curieho teplotou jednak odporovým ohřevem (I2R) a jednak feromagnetickými hysterezními ztrátami. Nad A2 se hysterezní mechanismus vytrácí, přitom je potřebné množství energie při zvýšení o jeden °C podstatně větší. Zatížení obvodů může způsobovat kolísání impedance v indukčním zdroji způsobené kompenzací změny.[7]

Odkazy

Reference

V tomto článku byl použit překlad textu z článku Beta ferrite na anglické Wikipedii.

  1. Foldyna et al., str. 71
  2. Hluchý et al., str. 57
  3. BULLENS, D. K. Steel and Its Heat Treatment. Et al.. 4. vyd. Svazek I. [s.l.]: Wiley & Sons Inc., 1938. S. 86.
  4. AVNER, S. H. Introduction to Physical Metallurgy. Et al.. 2. vyd. [s.l.]: McGraw-Hill, 1974. S. 225.
  5. ASM Handbook, Vol. 3: Alloy Phase Diagrams. [s.l.]: ASM International, 1992. ISBN 0-87170-381-5. S. 2.210 a 4.9.
  6. CULLITY, B. D.; GRAHAM, C. D. Introduction to Magnetic Materials. 2. vyd. [s.l.]: IEEE Inc., 2009. ISBN 978-0-471-47741-9. S. 91.
  7. SEMIATIN, S. L.; STUTZ, D. E. Induction Heat Treatment of Steel. 4. vyd. Svazek I. [s.l.]: ASM International., 1986. ISBN 0-87170-211-8. S. 95–98.

Literatura

  • FOLDYNA, Václav; HENNHOFER, Karel; OLŠAROVÁ, Věra, Hlavatý, Ivo; Koukal, Jaroslav; Kristofory, František; Ochodek, Václav; Pilous, Václav; Purmenský, Jaroslav; Schwarz, Drahomír; Veselko, Július. Materiály a jejich svařitelnost. Recenzent: Jaroslav Koukal. 1. vyd. Ostrava: Česká svářečská společnost ANB, ZEROSS, 2000. 216 s. ISBN 80-85771-85-3. [reference viz Foldyna et al.].
  • HLUCHÝ, Miroslav; MODRÁČEK, Oldřich; PAŇÁK, Rudolf, 2002. Strojírenská technologie. Lektoři Dr. Otakar Bothe a Ing. Ladislav Němec. 3. vyd. Svazek 2. Praha: Scientia. 173 s. ISBN 80-7183-265-0. [reference viz Hluchý et al.].
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.