Disjunktivní normální forma

Ve výrokové logice je formule v disjunktivní normální formě (DNF), pokud je ve tvaru disjunkcí P-termů, kde P-term definujeme jako konjunkce literálů (a je-li výroková proměnná, tak jí určené literály jsou právě a ).

Každá konjunkce literálů a také každá disjunkce literálů je DNF, protože je můžeme považovat za disjunkci P-termů s jedním literálem, resp. za konjunkci jednoho P-termu. Podobně jako v konjunktivní normální formě (KNF), jediné logické spojky v DNF jsou logická spojka a, nebo a negace. Negace může být pouze součástí literálu, tzn. že negovat lze pouze výrokovou proměnnou.

Platí, že pro každou formuli A lze sestrojit ekvivalentní formule K a D (tedy A ↔ K a A ↔ D), kde K je v KNF a D je v DNF. Toto tvrzení lze dokázat indukcí podle složitosti formule užitím De Morganových zákonů a distributivity.

Příklady

Příklady formulí, které jsou v DNF:

(negace smí stát jen před výrokovou proměnnou)
(tato formule je zároveň i v KNF)
(tato formule je zároveň i v KNF)

Příklady formulí, které nejsou v DNF:

Výše uvedené formule lze ovšem do DNF převést, tedy sestrojit k nim ekvivalentní formule, které jsou v DNF:

Související články

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.