Barvení grafu

Barvení grafu je jednou z disciplín teorie grafů, která se zabývá přiřazováním barev (téměř vždy reprezentovaných přirozenými čísly) různým objektům v grafu – vrcholům, hranám, stěnám atd. Nejčastěji jde o barvení vrcholů, ostatní případy (jako např. barvení sousedících ploch) lze na tento jednoduše převést.

Obarvený graf – 3 barvy
Vrcholy Petersenova grafu jsou obarvitelné třemi barvami

Definice

Nechť G = (V, E) je graf, k přirozené číslo. Zobrazení nazveme obarvením grafu G pomocí k barev, pokud pro každou hranu platí . Barevnost grafu (také chromatické číslo) G je minimální počet barev potřebný pro obarvení G. Značí se .

Některé vlastnosti

  1. = 1 právě tehdy, skládá-li se G z izolovaných vrcholů (diskrétní graf)
  2. = |V| pro libovolný úplný graf
  3. právě tehdy, obsahuje-li G kružnici liché délky (ekvivalentně, není-li G bipartitní)
  4. pro libovolný rovinný graf (viz slavný problém čtyř barev)
  5. (maximální stupeň vrcholu v grafu + 1)

Externí odkazy

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.