Celá funkce
Celá funkce v oboru komplexní analýzy je taková funkce, která je holomorfní na celé komplexní rovině. Příkladem takových funkcí jsou všechny mnohočleny, exponenciální funkce, a vše, co z těchto funkcí lze dostat jejich skládáním, sčítáním a násobením.
Vlastnosti
Každou celou funkci je možné zapsat jako mocninnou řadu.
Platí, že každá celá funkce splňující pro nějaké kladné konstanty M a R a přirozené číslo n nerovnost pro všechna z, , je mnohočlen stupně nejvýše n.
Zvláštním případem tohoto pro n = 0 je Liouvillova věta: každá omezená celá funkce je funkcí konstantní. Z tohoto tvrzení lze snadno dokázat základní větu algebry.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.