Nejmenší společný násobek
Nejmenší společný násobek (zkratka NSN, anglicky LCM - Least Common Multiple) několika daných čísel je nejmenší kladné celé číslo, které je celočíselným násobkem všech daných čísel. Společný násobek dvou nebo několika čísel je takové číslo, které je násobkem každého z těchto daných čísel.
Příklad
Například nejmenší společný násobek čísel 15, 20 a 90 je 180.
Výpočet pomocí rozkladu
Nejmenší společný násobek dvou čísel lze nalézt tak, že každé z čísel je rozloženo na součin prvočísel (tzv. prvočíselný rozklad) a výsledný NSN je součinem největšího možného počtu všech prvočísel (resp. součin největších mocnin), která se vyskytují alespoň v jednom rozkladu.[1][2][3]
Ukázka (součin největšího možného počtu prvočísel)
- Zadaná čísla: 15 a 20
- Číslo 15 lze rozložit na součin prvočísel 3 × 5
- Číslo 20 lze rozložit na součin 2 × 2 × 5
- Nejmenší součin musí obsahovat součin: 2 × 2, 3 a 5, což je 2 × 2 × 3 × 5 = 60.
Ukázka (součin největších možných mocnin)
- Zadaná čísla: 36, 40
- 36 = 22 × 32
- 40 = 23 × 51
- Výsledek: n(36, 40) = 23 × 32 × 51 = 360
Ukázka se třemi čísly
- Zadaná čísla: 15, 20, 90
- 15 = 3 × 5
- 20 = 2 × 2 × 5
- 90 = 2 × 3 × 3 × 5
- Výsledek: n(15, 20, 90) = 2 × 2 × 3 × 3 × 5 = 180
Výpočet pomocí NSD
Nejmenší společný násobek (NSN) lze vypočítat pomocí největšího společného dělitele (NSD) pomocí vzorečku:[2]
Využití
NSN se používá například při sčítání zlomků o různých jmenovatelích, kdy jmenovatel výsledku je nejmenším společným násobkem jmenovatelů sčítaných zlomků, například:
Zajímavost
Součin největšího společného dělitele a nejmenšího společného násobku dvou čísel se rovná součinu těchto dvou čísel.
Důkaz
Jestliže největší společný dělitel dvou čísel a je , potom lze číslo rozložit na součin a číslo lze rozložit na součin . Je-li skutečně největším společným dělitelem, potom je nejmenším společným násobkem. Součin je roven , což je také součin NSD a NSN.
Reference
- MASARYKOVA ZŠ V PLZNI. Nejmenší společný násobek. YouTube [online]. 2013-10-20 [cit. 2017-02-27]. Dostupné online.
- VOJÁČEK, Jakub. Nejmenší společný násobek. Matematika pro každého [online]. 2008-05-24 [cit. 2017-02-27]. Dostupné online.
- SCHOOL ACTION. Nejmenší společný násobek. YouTube [online]. 2008-05-23 [cit. 2017-02-27]. Dostupné online.
V tomto článku byl použit překlad textu z článku Plej malgranda komuna oblo na esperantské Wikipedii.
Související články
Externí odkazy
- do-skoly.cz - Online kalkulátor pro výpočet nejmenšího společného násobku 2 - 5 čísel včetně postupu řešení.