Cavalieriův princip
Cavalieriův princip neboli Cavalieriho princip je poznatek stereometrie používaný při výpočtu objemu těles a pojmenovaný po svém objeviteli, italském matematikovi Bonaventurovi Cavalierim (1598 – 1647). Cavalieriho princip ve třírozměrném případě říká, že tělesa se stejně velkými podstavami a výškami mají stejný objem, pokud mají řezy rovnoběžné s podstavami a vedené ve stejné vzdálenosti od podstav stejné obsahy. Ve dvourozměrném případě Cavalieriův princip tvrdí rovnost obsahu dvou rovinných obrazců, pokud úsečky rovnoběžné s osou souřadné soustavy, které je protínají ve shodné výšce, mají vždy stejnou délku.
Z moderního pohledu jde o důsledek Fubiniho věty integrálního počtu.
Cavalieriův princip lze použít například pro výpočet objemu koule elementárními prostředky, jak je znázorněno na animaci. Nejdříve ukážeme, že polokoule o poloměru R má stejný objem jako válec s podstavou o poloměru R a o výšce R, z něhož je vyříznut obrácený kužel tak, jak ukazuje vyobrazení. Podstavy i výšky obou těles se rovnají a rovnají se i obsahy řezů v kterékoli výšce v nad podstavou. U polokoule je řez kruhový, jehož poloměr je podle Pythagorovy věty a má tedy plochu . Řez vyříznutého válce je mezikruží s plochou , a to je stejné jako obsah řezu polokoule . Platí tedy předpoklady Cavalieriho principu, a to znamená, že obě tělesa na obrázku mají stejný objem. Objem vyříznutého válce je rozdílem objemu válce a objemu kužele: Objem celé koule je tedy dvojnásobný: což je správný vzorec pro objem koule.
Související články
Externí odkazy
- Obrázky, zvuky či videa k tématu Cavalieriův princip na Wikimedia Commons
- (de) Prinzip von Cavalieri