Šestiúhelníkové číslo

Šestiúhelníková čísla jsou figurální čísla odpovídající šestiúhelníku. Konkrétně je šestiúhelníkové číslo rovno počtu bodů, ze kterých lze sestavit pravidelný šestiúhelník dle obrázku.

První čtyři šestiúhelníková čísla

Vzorec pro -té šestiúhelníkové číslo je

Několik prvních šestiúhelníkových čísel je 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946, atd. (Posloupnost A000384 v databázi On-Line Encyclopedia of Integer Sequences.)

Každé šestiúhelníkové číslo je zároveň trojúhelníkové číslo, ale jenom každé druhé trojúhelníkové číslo je šestiúhelníkové. Stejně jako u trojúhelníkových čísel, může být ciferace šestiúhelníkového čísla (v desítkové soustavě) pouze 1, 3, 6 nebo 9, a to v pořadí 1, 6, 6, 1, 9, 3, 1, 3, 9, atd.

Všechna sudá dokonalá čísla jsou šestiúhelníková. Jsou dána vzorcem

kde je Mersennovo prvočíslo. Např. druhé šestiúhelníkové číslo je , čtvrté je , šestnácté je a šedesátéčtvrté je . Protože nejsou známa žádná lichá dokonalá čísla, tak jsou všechna známá dokonalá čísla šestiúhelníková.

Největší přirozené číslo, které nelze zapsat jako součet nejvýše čtyř šestiúhelníkových čísel, je 130. Adrien-Marie Legendre v roce 1830 dokázal, že se takto dají vyjádřit všechna přirozená čísla větší než 1 791.

Test šestiúhelníkovosti čísel

Zda je přirozené číslo šestiúhelníkové, lze snadno zjistit vypočítáním hodnoty následujícího výrazu

Pokud je celé číslo, je šestiúhelníkové číslo, jinak šestiúhelníkovým číslem není.

Ostatní vlastnosti

Alternativně lze -té šestiúhelníkové číslo vyjádřit jako součet

Reference

V tomto článku byl použit překlad textu z článku Hexagonal number na anglické Wikipedii.


Externí odkazy

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.