Kartézská soustava souřadnic
Kartézská soustava souřadnic je taková soustava souřadnic, u které jsou souřadné osy vzájemně kolmé přímky, které se protínají v jednom bodě – počátku soustavy souřadnic. Jednotka se obvykle volí na všech osách stejně velká. Jednotlivé souřadnice polohy tělesa je možno dostat jako kolmé průměty polohy k jednotlivým osám.
V prostoru má kartézská soustava souřadnic 3 vzájemně kolmé osy (běžně označované x, y, z), v rovině 2 kolmé osy (x, y).
Historie
Soustava je pojmenována podle francouzského matematika a filosofa Descarta (1596–1650), latinsky Cartesius (proto „kartézská“), který se zasloužil (kromě jiného) o propojení algebry a eukleidovské geometrie. Nezávisle na něm byly souřadnice objeveny i matematikem Pierrem de Fermatem, který také uvažoval ve třech dimenzích, svůj objev ale nepublikoval. Ještě před Descartem a Fermatem používal konstrukce podobné kartézským souřadnicím filosof a teolog Mikuláš Oresme († 1382), profesor pařížské univerzity.
Pravotočivá a levotočivá soustava prostorových kartézských souřadnic
Představte si, že v místě, kde stojíte, je počátek prostorové kartézské soustavy. Osa x nechť směřuje přímo vpřed (směrem, kterým se díváte), osa y nechť směřuje vpravo a osa z nechť směřuje vzhůru. Taková soustava se nazývá pravotočivá souřadná soustava (v angličtině left handed).
Určení, zda je soustava pravotočivá či levotočivá, usnadňuje pravidlo pravé ruky.
Zaměníme-li osy x a y, získáme souřadnou soustavu levotočivou (v angličtině right handed). Příklad pravotočivé soustavy je na obrázku.
Obvykle se pracuje s pravotočivou souřadnou soustavou.
Definice
Číselná osa
Nejjednodušší kartézskou soustavou je číselná osa. Jedinou souřadnicí každého bodu je jeho vzdálenost od počátku. Zápis je jednoduchý – například A=[0] nebo L=[−5]. Je potřeba brát ohled na znaménko.
Dvě dimenze – rovina
V rovině tvoří kartézskou soustavu dvě vzájemně kolmé osy, které se protínají v počátku. Souřadnicemi bodu jsou jeho vzdálenosti od osy y (souřadnice x, vodorovná, abscisa) a od osy x (souřadnice y, svislá, ordináta). V obrázku jsou zakresleny čtyři body se svými souřadnicemi, které se obvykle zapisují ve tvaru (x, y), dají se tedy chápat také jako vektory, orientované úsečky spojující počátek s body. Délka vektoru čili vzdálenost bodu od počátku se vypočte pomocí Pythagorovy věty.
V matematice, fyzice a strojírenství je první osa obvykle definována nebo znázorněna jako vodorovná a orientovaná doprava a druhá osa je svislá, orientovaná směrem vzhůru. Počátek je často označen jako 0 a dvě souřadnice jsou často označeny písmeny X a Y nebo x a y. Osy pak mohou být označovány jako osa X a osa Y. Výběr písmen pochází z původní konvence, kdy se má použít druhá část abecedy pro značení neznámých hodnot, zatímco první část abecedy k značení hodnot známých. Ve vztahu k osám x,y je poloha libovolného bodu v dvourozměrném prostoru dána uspořádanou dvojicí reálných čísel, přičemž každé číslo udává vzdálenost tohoto bodu od počtu jednotek měřených podél dané osy. Souřadnice jsou obvykle psány jako dvě čísla v závorkách A=[a1;a2] – bod A [souřadnice na ose x, souřadnice na ose y].
Obě osy rozdělí rovinu na čtyři pravé úhly, oblasti nazvané kvadranty. Kvadrant může být pojmenován nebo číslován různými způsoby, ale kvadrant, kde jsou všechny souřadnice kladné, se obvykle nazývá první kvadrant.
Dalším široce používaným souřadnicovým systémem je polární souřadnicový systém, kde hraje roli vzdálenost od počátku a úhel.
Tři dimenze
V (třírozměrném) eukleidovském prostoru tvoří kartézskou soustavu souřadnic tří navzájem kolmé osy, protínající se v počátku [0,0,0]. Stejně jako v dvojrozměrném případě se každá osa stává číselnou čárou. Pro libovolný bod prostoru se jedná o rovinu, která je kolmá ke každé ose souřadnic v konkrétním místě. Kartézskými souřadnicemi jsou tři čísla ve zvoleném pořadí.
Neexistují standardní názvy souřadnic ve třech osách (někdy se však používají výrazy abscisa, ordináta a aplikáta). Souřadnice jsou často označeny písmeny X, Y, Z (nebo x, y, z). Pak se podle toho mohou označovat roviny XY, YZ a XZ.
V matematice a fyzice jsou první dvě osy často definovány nebo zobrazovány jako horizontální, přičemž třetí osa směřuje nahoru. V takovém případě může být třetí souřadnice označována jako výška/nadmořská výška.
Bod v třírozměrném prostoru značíme A=[a1;a2;a3]. Místo písmene A můžeme vybrat jakékoli písmeno. Například bod K ležící na souřadnicích [1;2;3]. Souřadnice bodu jsou jeho vzdálenosti od tří rovin, které se protínají v osách x, y, z. Podle toho, v jakém pořadí se osy uvádějí, se někdy rozlišuje pravotočivá a levotočivá soustava souřadnic.
Kvadranty a oktanty
Osy dvojrozměrného kartezského systému rozdělují rovinu na čtyři nekonečné oblasti tzv. kvadranty, které jsou ohraničeny ze stran poloosami. Kvadranty se značí římskými číslicemi a proti směru hodinových ručiček, začíná se od pravého horního ("severovýchodního") kvadrantu, viz obrázek napravo.
V každém z kvadrantů je x,y kladné nebo záporné: I (+, +), II (−, +), III (−, −) a IV (+, −).
Podobné rozdělení je i u trojrozměrného systému, prostor se ovšem dělí do osmi částí – oktantů. Označení určitého oktantu tvoří znaménka tří souřadnic, např. (+ + +) nebo (− + −). Zobecnění kvadrantu a oktantu na libovolný počet rozměrů je anglicky orthant a platí pro něj obdobný systém označení.
Externí odkazy
- Obrázky, zvuky či videa k tématu kartézská soustava souřadnic na Wikimedia Commons
- Kartézská soustava souřadnic na Mathworld
- Nástroj k výkladu souřadnic
- Interaktivní transformátor souřadnic