Narozeninový problém

V teorii pravděpodobnosti je narozeninový problém úloha vypočítat minimální početnost skupiny lidí, ve které je alespoň 50% pravděpodobnost nalezení dvojice se stejným datem narození (den a měsíc). Narozeninovým paradoxem je pak označována skutečnost, že tento počet (23) je mnohem menší než intuitivní odhad. Pro skupinu 57 a více lidí je tato pravděpodobnost už více než 99 %, postupně rostoucí až ke 100 % pro 366 lidí (za předpokladu že pracujeme s rokem o 365 dnech).[p. 1] Matematika skrytá za tímto problémem vede k známému kryptografickému útoku zvanému narozeninový útok.

Výpočet pravděpodobnosti

Graf s křivkou přibližné pravděpodobnosti, že alespoň dva lidé sdílejí narozeniny v dané skupině lidí.

Pro výpočet pravděpodobnosti, že v místnosti s n lidmi alespoň dva mají narozeniny ve stejný den, budeme předpokládat rovnoměrné rozdělení narozenin během roku (tj. budeme ignorovat přestupné roky, dvojčata atd.)

Je jednodušší nejprve spočítat pravděpodobnost p(n), že všech n narozenin je rozdílných. Pro n > 365 je tato pravděpodobnost, s ohledem na Dirichletův princip, rovna nule. Pro n ≤ 365 je dána vzorcem:

Protože druhá osoba nemůže mít stejné narozeniny jako první (364/365), třetí nemůže mít stejné narozeniny jako první dvě (363/365), atd.

Skutečnost, že nejméně dva z n lidí mají stejné narozeniny je komplementární jevu, že všechna data narozenin jsou různá. Proto pravděpodobnost p(n) je

Tato pravděpodobnost překračuje 1/2 pro n = 23 (hodnota kolem 50,7 %). Následující tabulka ukazuje pravděpodobnosti pro některé další hodnoty n (Tabulka ignoruje přestupné roky, jak již bylo výše popsáno):

Tento problém může být vypočítán také jako (1 - variace(365, počet studentů) / variace s opakováním (365, počet studentů)).

np(n)
1012 %
2041 %
2350,7 %
3070 %
5097 %
10099,99997 %
20099,9999999999999999999999999998 %
300(100 − 6×10−80) %
350(100 − 3×10−129) %
366100 %

Odkazy

Poznámky

  1. Úloha předpokládá stejnou pravděpodobnost narození v každém dni roku, ve skutečnosti však nejsou data narození rozprostřena rovnoměrně v průběhu roku, a to nikoliv pouze kvůli 29. únoru, který se vyskytuje pouze jednou za čtyři roky.[1]

Reference

Externí odkazy

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.