Cantorova věta o průniku kompaktů
Cantorova věta o průniku kompaktů tvrdí: Nechť je posloupnost do sebe vnořených neprázdných kompaktů. Pak jejich průnik je neprázdná množina.
Důkaz
Zvolím posloupnost tak, že pro každé přirozené číslo je . Díky tomu, že je kompakt, lze z této posloupnosti vybrat podposloupnost konvergující k .
Dále si všimnu, že pro každé leží všechny členy od jistého indexu této vybrané podposloupnosti uvnitř (díky způsobu, jakým jsou do sebe kompakty vnořeny). To platí pro každé přirozené číslo , tedy průnik až do nekonečna je neprázdný.
Související články
Literatura
Portály: Matematika
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.